Exhibit C-10

Cover and all of Chapter 2 (pages 9 through 22) of

A Guide to Estimating Water Needs of Landscape Plantings in California
The Landscape Coefficient Method and WUCOLS III
University of California Cooperative Extension and California Department of Water Resources
August 2000

(UC Coop. Extension Method)
A Guide to

Estimating Irrigation Water Needs
of
Landscape Plantings
in
California

The Landscape Coefficient Method
and
WUCOLS III
Chapter 2—
Estimating Water Needs for Landscape Plantings

Two formulas are used to estimate water needs for landscape plantings:

- the landscape evapotranspiration formula and
- the landscape coefficient formula.

Both formulas are introduced here and then used in subsequent chapters to estimate water needs. The landscape coefficient was developed specifically for estimating landscape water needs and is the principal focus of Chapter 2.

The method used for estimating water needs for landscape plantings is basically the same as that used for crops and turfgrasses. The ETc formula discussed in Chapter 1 is simply modified for application to landscapes. One key change, however, has been made: instead of using the crop coefficient (Kc), a landscape coefficient (KL) has been substituted.

The Landscape Evapotranspiration Formula

Water needs of landscape plantings can be estimated using the landscape evapotranspiration formula:

\[ET_L = KL \times ETo \]

Landscape Evapotranspiration = Landscape Coefficient \times Reference Evapotranspiration

This formula (called the ETL formula) states that water needs of a landscape planting (landscape evapotranspiration, ETL) is calculated by multiplying the landscape coefficient (KL) and the reference evapotranspiration (ETo).

As mentioned above, the ETL formula is basically the same as the ETc formula from Chapter 1, except that a landscape coefficient (KL) has been substituted for the crop coefficient (Kc). This change is necessary because of important differences which exist between crop or turfgrass systems and landscape plantings (see “Why a Landscape Coefficient”).

The following is an example of a simple calculation using the landscape coefficient in the landscape evapotranspiration (ETL) formula.

Example: A landscape architect wants to estimate water loss for the month of August from a large groundcover area being considered for a new commercial office park in Fresno. The architect looked up the reference evapotranspiration for August in Fresno (Appendix A) and found it to be 7.1 inches. The architect assigned a landscape coefficient value of 0.2. Using this information and the landscape evapotranspiration formula (ETL formula), the architect makes the following calculations:

\[KL = 0.2 \]
\[ETo = 7.1 \text{ inches for August in Fresno} \]
\[ET_L = KL \times ETo \]
\[ET_L = 0.2 \times 7.1 = 1.42 \text{ inches} \]

The architect estimates that the groundcover will need 1.4 inches in the month of August. (This is not the total amount of irrigation water needed, however, as irrigation efficiency needs to be considered. This topic is addressed in Chapter 5.)
In this example, a landscape coefficient was assigned. In actual practice, K_L needs to be calculated. The formula needed to calculate K_L is the heart of the landscape coefficient method and is the subject of the next discussion.

The Landscape Coefficient Formula

As the name implies, the landscape coefficient was derived specifically to estimate water loss from landscape plantings. It has the same function as the crop coefficient, but is not determined in the same way. Landscape coefficients are calculated from three factors: species, density, and microclimate. These factors are used in the landscape coefficient formula as follows:

$$K_L = k_s \times k_d \times k_{mc}$$

Landscape Coefficient = species factor x density factor x microclimate factor

Soil water availability plays a major role in controlling the rate of water loss from plants (ET rate). Many plants will lose water at a maximum rate as long as it is available. For example, some desert species have been found to maintain ET rates equivalent to temperate zone species when water is available. When soil moisture levels decrease, however, ET rates in desert species decline rapidly.

In landscape management, it is not the objective to supply all the water needed to maintain maximum ET rates. Rather, it is the intent to supply only a sufficient amount of water to maintain health, appearance and reasonable growth. Maximum ET rates are not required to do this.

The ET$_L$ formula calculates the amount of water needed for health, appearance and growth, not the maximum amount that can be lost via evapotranspiration.

This formula (called the K_L formula) states that the landscape coefficient is the product of a species factor multiplied by a density factor and a microclimate factor. By assigning numeric values to each factor, a value for K_L can be determined. The landscape coefficient is then used in the ET$_L$ formula, just as the crop coefficient is used in the ET$_c$ formula.

Why a Landscape Coefficient?

Crop coefficients are used for agricultural crops and turfgrasses, so why not for landscape plantings? There are three key reasons why landscape coefficients are needed instead.

1. Unlike a crop or turfgrass, landscape plantings are typically composed of more than one species. Collections of species are commonly irrigated within a single irrigation zone, and the dif-

ET Rates and Plant Water Needs

Soil water availability plays a major role in controlling the rate of water loss from plants (ET rate). Many plants will lose water at a maximum rate as long as it is available. For example, some desert species have been found to maintain ET rates equivalent to temperate zone species when water is available. When soil moisture levels decrease, however, ET rates in desert species decline rapidly.

In landscape management, it is not the objective to supply all the water needed to maintain maximum ET rates. Rather, it is the intent to supply only a sufficient amount of water to maintain health, appearance and reasonable growth. Maximum ET rates are not required to do this.

The ET$_L$ formula calculates the amount of water needed for health, appearance and growth, not the maximum amount that can be lost via evapotranspiration.

Some desert species, such as mesquite (*Prosopis glandulosa torreyana*), have been found to maintain ET rates equivalent to temperate zone species when water is available (Levitt et al 1995). When soil moisture levels decrease, however, ET rates in desert species decline rapidly.
different species within the irrigation zone may have widely different water needs. For example, a zone may be composed of hydrangea, rhododendron, alder, juniper, oleander, and olive. These species are commonly regarded as having quite different water needs and the selection of a crop coefficient appropriate for one species may not be appropriate for the other species.

Crop coefficients suitable for landscapes need to include some consideration of the mixtures of species which occur in many plantings.

2. Vegetation density varies considerably in landscapes. Some plantings have many times more leaf area than others. For example, a landscape with trees, shrubs, and groundcover plants closely grouped into a small area will have much more leaf area than one with only widely spaced shrubs in the same-sized area. More leaf area typically means an increase in evapotranspiration (water loss) for the planting. As a result, a dense planting would be expected to lose a greater amount of water than a sparse planting. To produce a reliable estimate of water loss, a coefficient for landscapes needs to account for such variation in vegetation density.

3. Many landscapes include a range of microclimates, from cool, shaded, protected areas to hot, sunny, windy areas. These variations in climate significantly affect plant water loss. Experiments in Seattle, Washington, found that a planting in a paved area can have 50% greater water loss than a planting of the same species in a park setting. Other studies in California found that plants in shaded areas lost 50% less water than plants of the same species in an open field condition. This variation in water loss caused by microclimate needs to be accounted for in a coefficient used for landscape plantings.

Collectively, these factors make landscape plantings quite different from agricultural crops and turfgrasses, and they need to be taken into account when making water loss estimates for landscapes. The landscape coefficient was developed specifically to account for these differences.
The Landscape Coefficient Factors: Species, Density, and Microclimate

Three factors are used to determine the landscape coefficient:

- Species
- Density
- Microclimate

These factors are key elements of the landscape coefficient method and need to be understood fully before KL and ETL calculations are made. As well as describing each factor, the following sections give information on how to assign values to each.

Species Factor (ks)

The species factor (ks) is used to account for differences in species’ water needs. In established landscapes, certain species are known to require relatively large amounts of water to maintain health and appearance (e.g., cherry, birch, alder, hydrangea, rhododendron), while others are known to need very little water (e.g., olive, oleander, hopseed, juniper).

This range in water needs is accounted for in the species factor.

Species factors range from 0.1 to 0.9 and are divided into four categories:

- **Very low**: < 0.1
- **Low**: 0.1 - 0.3
- **Moderate**: 0.4 - 0.6
- **High**: 0.7 - 0.9

These species factor ranges apply regardless of vegetation type (tree, shrub, groundcover, vine, or herbaceous) and are based on water use studies for landscape species (Table 2) and applicable data from agricultural crops (Table 1).

An evaluation of plant water needs (based on field observations) has been completed for over 1,800 species. These values are presented in Part 2 (WUCOLS III). Species factor values can be found by looking up the species under consideration, and selecting an appropriate value from the category.

Water: Needed for What?

In agricultural systems, water is applied to produce a crop. Whether it be tomatoes, beans, or apples, growers apply water to optimize yield and quality. In landscape systems, health, appearance, and growth are of greatest interest. Irrigation is managed to sustain plant defense systems, achieve desired canopy densities and color, generate desired growth, and produce flowers and fruit (in some species). Irrigation is not used to produce a harvestable crop in landscapes. Because of this difference between landscape and agricultural systems, landscapes typically can be managed at a level of irrigation lower than that needed for crop production.
range. The following is an example of using the WUCOLS list to select an appropriate k_s value.

Example: A landscape manager in Pasadena is attempting to determine the water requirements of a large planting of Algerian ivy. In using the ET-f$_m$ formula, the manager realizes a value for the species factor (k_s) is needed in order to calculate the landscape coefficient (K_l). Using the WUCOLS list (Part 2), the manager looks up Algerian ivy (*Hedera canariensis*) and finds it classified as “moderate” for the Pasadena area, which means that the value ranges from 0.4 to 0.6. Based on previous experience irrigating this species, a low range value of 0.4 for k_s is chosen and entered in the K_l formula. (If the manager had little or no experience with the species, a middle range value of 0.5 would be selected.)

![Image of landscape with ivy]

Although the above example is straightforward, the assignment of species factors to plantings can be difficult. Refer to “Assigning Species Factors to Plantings” for guidance in making k_s assignments.

![Image of tree ferns]

Some species, such as flannel bush (*Fremontodendron spp.*), need very little irrigation water to maintain health and appearance.

![Image of tree ferns]

Certain species, such as tree ferns (*Dicksonia antarctica* and *Cyathea cooperi*), require relatively large amounts of water to maintain health and appearance.
Assigning Species Factors to Plantings

1. **For single-species plantings**—
 When only one species occurs in the irrigation zone, use the ks value assigned in the WUCOLS list. For example, coyote brush is assigned to the “low” category and has a ks value from 0.1 to 0.3.

2. **For multiple-species plantings**—
 a. **When species have similar water needs**: In well-planned hydrozones where species of similar water requirements are used, the selection of a ks value is straightforward: simply select the category to which all species are assigned and choose the appropriate value. For example, if all the species are in the moderate category, then a value from 0.4 to 0.6 is selected.

 b. **When species water needs are not similar**: In cases where species with different water needs are planted in the same irrigation zone, then the species in the highest water-need category determine the ks value. This assignment is required if all plants are to be retained without water stress injury. For example, if species in low, moderate, and high categories are planted in the same irrigation zone, then to avoid water stress injury to species in the high category, a ks value from 0.7 to 0.9 would need to be selected. Unfortunately, this means that species in the moderate and low categories will receive more water than needed, which may result in injury.

Considering that plantings with mixed water needs are not water-efficient in most cases and

<table>
<thead>
<tr>
<th>Plant Species</th>
<th>Fraction of ET₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentilla tabernaemontani</td>
<td>0.5 - 0.75</td>
</tr>
<tr>
<td>Sedum acre</td>
<td>0.25</td>
</tr>
<tr>
<td>Cerastium tomentosum</td>
<td>0.25</td>
</tr>
<tr>
<td>Liquidambar styraciflua</td>
<td>0.20</td>
</tr>
<tr>
<td>Quercus ilex</td>
<td>0.20</td>
</tr>
<tr>
<td>Ficus microcarpa nitida</td>
<td>0.20</td>
</tr>
<tr>
<td>Hedera helix ‘Neddlepoint’</td>
<td>0.20</td>
</tr>
<tr>
<td>Drosanthemum hispidum</td>
<td>0.20</td>
</tr>
<tr>
<td>Gazania hybrida</td>
<td>0.25-0.50</td>
</tr>
<tr>
<td>Vinca major</td>
<td>0.30</td>
</tr>
<tr>
<td>Baccharis pilularis</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Plant injury may occur when species with different water needs are planted in a single irrigation zone. During a drought, irrigation was withdrawn from this planting of star jasmine (Trachelospermum jasminoides) and cotoneaster (Cotoneaster sp). Subsequently, star jasmine was severely injured, while cotoneaster was not visibly affected.
the incidence of plant injury may increase, some management options are worth considering:

- If only a small number or percentage of plants are in the high category, then the replacement of such plants with species with lower water needs would allow for the selection of a k_s in a lower range.

- If all plants are to be retained, but a level of appearance somewhat less than optimal is acceptable, then a k_s value from a lower range may be selected. For example, in the case where plants in the low, moderate, and high categories are in the same irrigation zone, a k_s value from the moderate range may be selected with the understanding that some injury to species in the high category may result.

- In cases where all plants are to be retained and no water stress injury is acceptable, then supplemental irrigation for species in the high category should be considered. Again using the case where species in low, moderate, and high categories are planted in the same irrigation zone, a k_s value from the moderate range may be selected for the planting, provided additional water is supplied to individual plants with higher water needs. This approach requires an adjustment to the irrigation system whereby additional sprinklers or emitters are used to deliver supplemental water to species with higher water requirements.

3. For species in the “very low” category—

It is important to remember that certain species can maintain health and appearance without irrigation after they become established. Such species are grouped in the “very low” category and are assigned a k_s of less than 0.1. Essentially this classification means that species in this group do not need to be irrigated unless winter rainfall is abnormally low. Accordingly, if no irrigation is supplied, then there is no need to calculate a landscape coefficient and a k_s value is not assigned. In low rainfall years, some irrigation may be needed, however, and a k_s value of 0.1 should be sufficient to maintain health and appearance in these species.

<table>
<thead>
<tr>
<th>Density Factor (k_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The density factor is used in the landscape coefficient formula to account for differences in vegetation density among landscape plantings. Vegetation density is used here to refer to the collective leaf area of all plants in the landscape. Differences</td>
</tr>
</tbody>
</table>
in vegetation density, or leaf area, lead to differences in water loss.

The density factor ranges in value from 0.5 to 1.3. This range is separated into three categories:

<table>
<thead>
<tr>
<th>Category</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0.5 - 0.9</td>
</tr>
<tr>
<td>Average</td>
<td>1.0</td>
</tr>
<tr>
<td>High</td>
<td>1.1 - 1.3</td>
</tr>
</tbody>
</table>

Immature and sparsely planted landscapes typically have less leaf area than mature or densely planted landscapes, and thus lose less water. These plantings are assigned a \(k_d \) value in the low category. Plantings with mixtures of vegetation types (trees, shrubs, and groundcovers) typically have greater collective leaf areas than plantings with a single vegetation type, and thus will lose more water. These plantings are assigned a density factor value in the high category. Plantings which are full but are predominantly of one vegetation type, are assigned to the average category.

Example: The grounds manager of a college campus in San Diego wants to determine the landscape coefficient for a planting consisting of gazania groundcover and a few widely-spaced escallonia shrubs. Since the plants cover the ground surface completely, the planting is considered to be full. Based on these vegetation density characteristics (i.e., full and predominantly of one vegetation type), the manager determines that this is an average density planting and assigns a \(k_d \) value of 1.0.

Although this example might infer that the selection of the density factor is fairly simple, it can be difficult to determine. Vegetation density varies considerably and assigning density factors can be confusing. Many cases exist where plant spacing and distribution is not uniform and where a mixture of vegetation types exist.

Unfortunately, a standardized system of evaluating vegetation density for landscapes does not exist. Nonetheless, limited information from agricultural systems (principally orchards) can be applied to landscapes. The following sections describe two terms, canopy cover and vegetation tiers, which when applied to landscape plantings provide some guidance in assessing vegetation density.

Canopy Cover

Canopy cover is defined as the percentage of ground surface within a planting which is shaded by the plant canopy (or, simply, percent ground shading). A planting with full canopy cover will shade 100% of the ground surface, while a 50% canopy cover will cast a shadow on 50% of the ground area. The higher the canopy cover the greater the density of vegetation on a surface area basis.

Most mature landscape plantings have a complete canopy cover, i.e., the trees, shrubs, and groundcovers shade 100% of the ground surface. New plantings, immature plantings, and widely-spaced plantings are examples of cases where the canopy cover is less than 100%.

Orchard data gives an indication of how canopy cover affects water loss. Studies show that water loss from orchards does not increase as canopy cover increases from 70% to 100%. Below 70% cover, however, orchard water loss declines.

Applying this information to landscapes, plantings of trees with a canopy cover of 70% to 100% constitutes a complete canopy cover condition, and
would be considered as average for density factor assessments. A tree planting with less than 70% canopy cover would be in the low category.

For plantings of shrubs and groundcovers, a canopy cover of 90% to 100% constitutes complete cover. This represents an average condition for density factor assessments, while less than 90% cover would be in the low category.

Vegetation Tiers

Canopy cover gives an assessment of vegetation density on an area basis, i.e., the percent ground area covered by vegetation describes the closeness or sparseness of plants in a planting. Another dimension needs to be considered for landscapes: the vertical dimension. Landscapes are frequently composed of plants of various heights: tall trees, low groundcovers, and shrubs somewhere in between. Due to the typical growth form of each vegetation type, “tiers” of vegetation result.

When combinations of these vegetation types occur in a planting they add a height element which will have an affect on water loss. In orchard plantings, for example, field research has shown that the addition of a cover crop increases evapotranspiration from 25% to 80% above a bare soil condition. In other words, adding a groundcover-like planting beneath orchard trees results in a substantial increase in water loss.

In landscapes, groundcovers and/or shrubs planted in the understory of trees are likely to have a similar effect on water loss as found in orchard settings. Additionally, by adding trees to a groundcover planting or shrubs to a tree-groundcover planting, an increase in water loss would be expected.

In most cases, the presence of vegetation tiers in landscapes constitutes a high density condition. For example, a planting with two or three tiers and complete canopy cover would be considered to be in the high ka category.

In landscapes, groundcovers and/or shrubs planted in the understory of trees are likely to have a similar effect on water loss as found in orchard settings. Additionally, by adding trees to a groundcover planting or shrubs to a tree-groundcover planting, an increase in water loss would be expected.

In most cases, the presence of vegetation tiers in landscapes constitutes a high density condition. For example, a planting with two or three tiers and complete canopy cover would be considered to be in the high ka category.
Assigning Density Factor Values

Canopy cover and vegetation tiers are used to assess vegetation density for density factor assignments. Since it is very difficult to account for all the variation in vegetation density which occurs in landscapes, the following assignments are made simply as a guide to making reasonable assessments.

Average Density: $k_d = 1.0$

Plantings of one vegetation type: for trees, canopy cover of 70% to 100% constitutes an average condition. For shrubs or groundcovers, a canopy cover of 90% to 100% is considered to be an average condition.

Plantings of more than one vegetation type: for mixed vegetation types, an average density condition occurs when one vegetation type is predominant while another type occurs occasionally in the planting, and canopy cover for the predominant vegetation type is within the average density specifications outlined above. For example, a mature groundcover planting (greater than 90% canopy cover) which contains trees and/or shrubs that are widely spaced would be considered to be average density. Additionally, a grove of trees (greater than 70% canopy cover) which contains shrubs and/or groundcover plants which are widely spaced would constitute an average condition.

Low Density: $k_d = 0.5 - 0.9$

Low density plantings are characterized largely by canopy covers less than those specified for the average density condition. For instance, a tree planting with less than 70% canopy cover would be assigned a k_d value less than 1.0. The precise value assigned (between 0.5 and 0.9) would be based on the canopy cover assessment: a lower k_d value for a thinner canopy cover.
Microclimate Factor (k_{mc})

Microclimates exist in every landscape and need to be considered in estimates of plant water loss. Features typical of urban landscapes (such as buildings and paving) influence temperature, wind speed, light intensity and humidity. These features vary considerably among landscapes, resulting in differences in microclimate. To account for these differences, a microclimate factor (k_{mc}) is used.

The microclimate factor ranges from 0.5 to 1.4, and is divided into three categories:

<table>
<thead>
<tr>
<th>Category</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0.5 - 0.9</td>
</tr>
<tr>
<td>Average</td>
<td>1.0</td>
</tr>
<tr>
<td>High</td>
<td>1.1 - 1.4</td>
</tr>
</tbody>
</table>

The microclimate factor is relatively easy to set. An “average” microclimate condition is equivalent to reference evapotranspiration conditions, i.e., an open-field setting without extraordinary winds or heat inputs atypical for the location. This microclimate is not substantially affected by nearby buildings, structures, pavements, slopes, or reflective surfaces. For example, plantings in a well-vegetated park which are not exposed to winds atypical of the area, would be assigned to the average microclimate category.

High Density: $k_d = 1.1 - 1.3$

When canopy cover is full for any vegetation type, then increases in density result from increases in the number of plants of other vegetation types. For example, by adding trees to a mature groundcover planting (groundcover canopy cover = 100%), an increase in vegetation density occurs. The addition of shrubs to the planting further increases the density. This mix of vegetation types creates a layering or tiering of vegetation which represents potential increases in water loss. Upward adjustments of k_d can be made to account for vegetation tiering. The highest density condition, where all three vegetation types occur in substantial numbers in a planting, would be assigned a k_d of 1.3. In plantings where lesser degrees of vegetation tiering occurs (e.g., a two-tiered planting), then a k_d value of 1.1 or 1.2 is appropriate.

For shrubs and groundcovers, canopy cover less than 90% constitutes a density less than average ($k_r < 1.0$). This mixed planting would be assigned a low density value (0.5 - 0.9).
In a “high” microclimate condition, site features increase evaporative conditions. Plantings surrounded by heat-absorbing surfaces, reflective surfaces, or exposed to particularly windy conditions would be assigned high values. For example, plantings in street medians, parking lots, next to southwest-facing walls of a building, or in “wind tunnel” areas would be assigned to the high category.

The high and low microclimate categories have ranges of values. For example, the low category ranges from 0.5 to 0.9. The specific value assigned within a category will depend on an assessment of the degree to which the microclimate will affect plant water loss. For example, trees in a parking lot which are exposed to constant winds (atypical for the general area) will be assigned a higher value in the high category than if the location was not windy. Conversely, a courtyard planting in afternoon shade and protected from winds will be assigned a \(k_{mc} \) value in the low category, but less than that for a planting without afternoon shading.

Example: An irrigation consultant is estimating landscape water requirements for a large residential development. The buildings, parking lots,
walkways, and open areas at the site create substantially different microclimates within plantings. Starting with the open areas, he determines that conditions are quite similar to reference ET measurement sites and assigns them to the average category ($k_{mc} = 1.0$). Trees in the parking lot are exposed to heat from the asphalt pavement and reflected light from cars and are assigned to the high category. Since the parking lot is not exposed to extraordinary winds, however, he chooses a midrange value of 1.2. Shrub and groundcover plantings on the northeast side of buildings are shaded for most of the day and are assigned to the low category. Being protected from winds typical of the area as well, they are given a k_{mc} value of 0.6, in the lower end of the range.

Assigning Microclimate Factor Values

Average Microclimate: $k_{mc} = 1.0$
Site conditions equivalent to those used for reference ET measurements represent an average microclimate. Reference ET is measured in an open-field setting which is not exposed to extraordinary winds or heat inputs from nearby buildings, structures, or vehicles. Plantings in similar conditions would be considered to be in an average microclimate. Plantings in park settings are most typically assigned to this category. Although some hardscape may exist, vegetation dominates the landscape. Large plantings of groundcover, groves of trees, and mixtures of shrubs, turf, and trees in relatively open areas represent examples of an average microclimate condition. Small parks with adjacent buildings, extensive hardscapes, or exposed to extraordinary winds would not be included in the average category.

Low Microclimate: $k_{mc} = 0.5 - 0.9$
Sites which are shaded or protected from winds typical to the area are considered to be in the low microclimate category (Costello et al. 1996). Features of the site modify the microclimate such that evaporative conditions are less than those found in the average microclimate. Plantings located on the north side or northeast side of buildings, shaded by overhead structures, or within courtyard settings are typically assigned a k_{mc} value in the low range. Plantings protected from winds by buildings, structures, or other vegetation also would be assigned to the low category. The specific value assigned for the microclimate factor will depend on the specific site conditions. For example, a planting in a courtyard which is shaded most of the day and protected from winds may be assigned a value of 0.6, while a simi-
lar planting which is located on the northeast side of a building may be assigned a value of 0.8.

High Microclimate: $k_{mc} = 1.1 - 1.4$

Sites which are exposed to direct winds atypical for the area, heat inputs from nearby sources, and/or reflected light would be considered to be in the high microclimate category. These features of the site increase evaporative conditions above those found in an average microclimate condition. Plantings located in medians, parking lots, or adjacent to south or southwest facing walls which are exposed to higher canopy temperatures than those found in a well-vegetated setting would be in the high category. Plantings in wind tunnel locations and those receiving reflected light from nearby windows, cars, or other reflective surfaces are also in high microclimate conditions. The specific value assigned will depend on the specific conditions. For example, a shrub planting located next to a southwest facing wall may be assigned a k_{mc} value of 1.2, while a similar planting next to a southwest wall which is composed of reflective glass and is exposed to extraordinary winds may be assigned a value of 1.4.

<table>
<thead>
<tr>
<th></th>
<th>High</th>
<th>Moderate</th>
<th>Low</th>
<th>Very Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species Factor (k_s)</td>
<td>0.7-0.9</td>
<td>0.4-0.6</td>
<td>0.1-0.3</td>
<td><0.1</td>
</tr>
<tr>
<td>Density (k_d)</td>
<td>1.1-1.3</td>
<td>1.0</td>
<td>0.5-0.9</td>
<td></td>
</tr>
<tr>
<td>Microclimate (k_{mc})</td>
<td>1.1-1.4</td>
<td>1.0</td>
<td>0.5-0.9</td>
<td></td>
</tr>
</tbody>
</table>

Species factor values may change during the year, particularly for deciduous species. See Table 1 for seasonal changes in crop coefficients for agricultural crops.